Approximate Analytical Solutions for Solute Transport in Two-layer Porous Media*
نویسنده
چکیده
Mathematical models for transport in layered media are important for investigating how restricting layers affect rates of solute migration in soil profiles; they may also improve the analysis of solute displacement experiments. This study reports an (approximate) analytical solution for solute transport during steady-state flow in a two-layer medium requiring continuity of solute fluxes and resident concentrations at the interface. The solutions were derived with Laplace transformations making use of the binomial theorem. Results based on this solution were found to be in relatively good agreement with those obtained using numerical inversion of the Laplace transform. An expression for the flux-averaged concentration in the second layer was also obtained. Zeroand first-order approximations for the solute distribution in the second layer were derived for a thin first layer representing a water film or crust on top of the medium. These thin-layer approximations did not perform as well as the ‘binomial’ solution, except for the first-order approximation when the Peclet number, P, of the first layer, was low (P < 5). Results of this study indicate that the ordering of two layers will affect the predicted breakthrough curves at the outlet of the medium. The two-layer solution was used to illustrate the effects of dispersion in the inlet or outlet reservoirs using previously published data on apparatus-induced dispersion.
منابع مشابه
Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملTwo-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملTwo-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کامل